Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

sam@nitk.edu.in

https://sam.nitk.ac.in/

MA111 - Engineering Mathematics - II Problem Sheet - 9

Wronskian, Nonhomogeneous ODEs and Solution by Variation of Parameters

- 1. Prove or disprove that the following pair of functions are basis of a linear ODE.
 - (a) $\cos 5x$, $\sin 5x$
 - (b) $x^k \cos(\ln x), x^k \sin(\ln x)$
 - (c) *x*, 1/*x*
 - (d) e^x, e^{x-1} .
- 2. Find the general solution
 - (a) $y'' + 4y' + 4y = e^{-x} \cos x$
 - (b) $(3D^2 + 27I)y = 3\cos x + \cos 3x$
 - (c) $(D^2 + 2D + \frac{3}{4}I)y = 3e^x + \frac{a}{2}x.$
- 3. Solve the IVPs

(a)
$$y'' + 3y = 18x^2$$
, $y(0) = -3$, $y'(0) = 0$

- (b) $(x^2D^2 3xD + 3I)y = 3\ln x 4, y(1) = 0, y'(1) = 1.$
- 4. Solve
 - (a) $y'' 4y' + 5y = e^{2x} \operatorname{cosec} x$
 - (b) $(D^2 7I)y = \frac{1}{\cos hx}$.
- 5. Solve $y'' 2y' + y = 35x^{3/2}e^x + x^2$ by using the method of variation of parameter.

6. Show that the following set of functions forms a basis of an linear ODE.

(a)
$$\{1, x^2, x^4\}$$

- (b) $\{1, e^{-x} \cos 2x, e^{-x} \sin 2x\}.$
- 7. Are the following functions linearly independent?
 - (a) $x^2, \frac{1}{x^2}, 0$ on $(0, \infty)$
 - (b) $e^x \cos x, e^x \sin x, e^x$ on \mathbb{R}
 - (c) $\cos^2 x, \sin^2 x, \cos^2 x \sin^2 x$ on \mathbb{R} .
